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Operating principles of ultrasonic distance sensors

Range and resolution limitations of ultrasonic distance sensors

Improving sensor range and resolution via time-optimal control

Role of implementation constraints in formulation of the control problem

Model-free solution to implementation-constrained time-optimal control problem



Distance Measurement with an Ultrasonic Sensor
* An ultrasonic sensor consists of one or more o \Mﬂ

ultrasonic transducers and a signal processor Target
* Distance measurement begins with the MW\%%W

transmission of a pulse towards a target

Single-transducer configuration (monostatic)
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Double-transducer configuration (bistatic)
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Under suitable conditions, an echo is received
after a time delay

e Target orientation, material composition and transmit
pulse strength play major roles

Target

Transducer voltage waveforms are processed to
estimate the time delay and compute distance to
the target




Pulse Generation in Piezoelectric Ultrasonic Transducers

* Piezoelectric ultrasonic transducers are u(t) +I MN\I\/\[\[\AANWW p(t)
poorly damped resonant systems by design -

* Typical excitation signal consists of an integer
number of pulses at the resonant frequency Build Up

] . . Ring Down
* Low damping ensures high-amplitude pressure .
wave transmission =

* Necessary to sense distant targets and combat
propagation/reflection loss

* Low damping gives rise to a long ring-down
period
* Ringing has several undesirable consequences

Transmitted Signal

t

Excitation Signal

* Transducer design tradeoff: Introducing = ‘
damping decreases ring-down time at the
cost of pulse strength '
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Transmitted Signal B

Transmitted Signal A

Issue #1: Ringing Limits Sensing Range

Target

t
Received Signal B
«— Echo from target

t
Received Signal A

«—— Echo from target

Single-transducer configuration (monostatic)

oW <
] \7 Target

Double-transducer configuration (bistatic)

TR (t)
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» Scenario: Object located close to sensor
* Without ringing suppression, the received echo is completely obscured by ringing

* Clearly, both thresholding and correlation-based detection schemes will fail here

* Note: Transmit activity can appear in 74,5 (t) even in the bistatic case due to crosstalk (green)



Issue #2: Ringing Limits Sensing Resolution

Transmitted Signal A Transmitted Signal B

p5(t)

t t

Received Signal A Received Signal B

Monostatic configuration shown. Applies equally to
bistatic configuration

t t

* Scenario: Two distinct targets located close together within field of view

* Transducers have a finite beam width. Acoustic energy is transmitted into a conical region of space

which may contain multiple objects. Multiple echoes may return

Georgia
* Without ringing suppression, the echoes from target T and target T, are not separable TeChQ
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Issue #3: Ringing Creates Variability in Pulse Transmission

Transmitted Signal A Transmitted Signal B

| ‘— — 2nd Burst Issued‘

e

‘— — 2nd Burst Issued‘

i

pa(t)
—

p5(t)
—

» Scenario: Two burst events issued in rapid succession

e This situation could arise if multiple distance measurements are being averaged to reduce the

influence of noise

* The amplitude of the second burst pulse can vary significantly depending on the time separation

between burst events

_ . _ _ Georgia@
* Can lead to failed object detections when detections are expected Tech|)
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Poor damping of piezoelectric ultrasonic transducers is beneficial during pulse transmission,
but also gives rise to undesirable ringing

* We wish to drive the system to rest in minimum time, from its state at the end of burst

The natural solution is time-optimal control. May consider continuous-time first

Given xg, choose u(t) € U, for0 <t < T to
minimize T
subjectto x(t) = Ax(t) + Bu(t)
x(0) = x, x(T)=0
Possible input constraint set: U, = {u: |u| < Uy }
This problem is treated in textbooks, solution is bang-bang with edges in [0, T] [1]

Requires analog circuitry to implement. We favor microcontroller-based implementation



If using a microcontroller, placement of edges is restricted to a discrete set of points. Discrete-time time-
optimal control is more appropriate:
Given xg, choose ulk] € Uz fork =0,...,K — 1to
minimize K
subjectto x[k + 1] = Agx[k] + Baulk]
x[0] = xy, x[K] €S

. . . T.
Connections between continuous and discrete problems: A; = e4s, B, = fos edBdt, T ~KT;

Uy = {u: lul < Umax}/ S = {O}

e Solution via convex optimization in [2]; does not account for actuator quantization

Ug ={x@/QDUmax, q=0,1,...,0} Se= {x: |[x|| <€}
* Accounts for discrete-time and discrete signal amplitude constraints [3]
* Ugq is afinite set, therefore searchable. Special case: Q =1 = Uy = {—Unmax, 0, Unmax }

e Search-based solution allows us to shed dependence on a model



Inspiration: Time-Optimal Control of the Harmonic Oscillator

1
. . o—p
* Could exhaustively search over all possible control sequences
+

such that ulk] € {—U.;,q00, 0, Umax}, Kk =0,1,..K —1 O, =

* Can we use intuition to find a more intelligent (faster) solution?

* Transducer response resembles that of a second-order damped v Co = L4 %
harmonic oscillator

* Due to poor damping, studying the undamped oscillator is
informative Ry §

e The continuous-time time-optimal control to drive the state of o
the harmonic oscillator from an initial condition to the origin is

bang-bang at the resonant frequency Butterworth Van-Dyke model of

an ultrasonic transducer — RLC
» Easy to realize (at least approximately) using a microcontroller branch represents a mechanical

* Reduces size of search space! oscillator



Inspiration: Time-Optimal Control of the Harmonic Oscillator

The undamped harmonic oscillator is described by:

[ ] Lw 0 [ ] [O]u Ju@®l <1

It can be shown that when subjected to the input:

u(t) = sign(sin(wt)) ,for N cycles
B 0 , otherwise

The (scaled) state after the nt® of Ny cycles is given
by:

wx(zn ) l gn] ,n=20,..Ng
The time origin for control is the end of burst; initial
conditions for control are located on the switch curve

The first control action must therefore be -1 for m/w
seconds, irrespective of the resonant frequency!

wxa(t)

10

State Trajectory in (wz1,wzs) Plane
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Algorithm: Model-Free Shutdown

B\ _ . _ Sample Table Constructed by Algorithm
* We propose finding the time-optimal control, subject

to implementation constraints, via a brief, one-time
4

power-on calibration procedure: 1 2 6
R 2 2.5 7 4.5
f = Estimated resonant frequency in Hz
N = 3 2.5 8 5
s,prev 0
for Np =1 : 10
P 4 3 9 5 oS
for Ns = Ns,prev : 1/16 : Ng \ 5 3.5 10 5.5
Issue Np burst pulses at [ Hz
Issue Ng shutdown pulses at f Hz
ts = Measured settling time Sample Candidate Excitation Sequence
i3 ts < tmin Example Input Signal For Model-Free Shutdown
tmin = tS T I T T T T T
Ns,prev = NS Ng =6 Ng = 3.25 . |

end if T 11 ][] ][]
end for
Record Nsyrey in Table

end for

u(t) [V]

* In the worst case (if Ng = 0 always recommended),
890 burst-and-measure trials are conducted ’ T, =1/f
3T, 4T, 5T, 67, 7, 8T, 9T, 107,

* If the sample table on the right is produced, 370 burst- voono e
and-measure trials are conducted Ge&}gjﬁ@
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Results and Comparison: Model-Free Shutdown

Simulation model developed for a 58 kHz

transducer + impedance matching network

Blue: No shutdown action

Green: Discrete-time time-optimal
shutdown

Red: Model-free shutdown
c Uy = {_Umax» 0, Unax }/ Se= {x: x| < E}

Discrete-time time-optimal solution
provides a benchmark

* A precise model and a departure from current
hardware are required for implementation

Table construction is done once at power-
up. At runtime, only a table lookup is
required. No expensive computation!

100

Transducer Voltage: v(l) [V]

50

-50

-100

u(t) V]

1 ] | |
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Transducer Voltage: v(t)

T T T T T

——— Uncompensated System
——— N, = 4 Shutdown Pulses
——— Discrete-Time Time-Optimal
— — End of Burst Sequence —

NN AN DA A A ADA o cous
e
: ’ ’ ts0~ 0.411 ms Time for envelope
| ts,c~ 0.517 ms to decay to noise- .
| tsu ~ 0.767 ms level, captured in €
|
! [ ! | | | | ! !
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
¢ [ms]
Control Voltage: u(t)
T T T T T I T T
N - : oL ——— N, = 4 Shutdown Pulses
W | ——— Uncompensated System m
| Discrete-Time Time-Optimal
| — — End of Burst Sequence -
|
| _
Red solution (model-free) agrees with green h
solution (discrete-time time-optimal) for most -
| of the shutdown interval 1
uuu U L
| [ ! ! \ | \ | !
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t [ms]
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* To enhance sensor range and resolution, short pulses are preferred over long
pulses

* Time-optimal control is employed to produce the shortest possible pulses by
suppressing ringing after burst

 Practical implementation constraints influence the formulation of the control
problem

* A simple, model-free solution to the properly reformulated control problem
IS presented
* This solution is time-optimal, subject to practical implementation constraints
* This solution is model-free. Not susceptible to model parameter error

* This solution is inspired by 2"d order theory, but was shown to perform well even on a
4t order system
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Thank you for this opportunity!
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Backup Slide: Model Details, Energy Removal Perspective

g3 X 1079 Energy Stored In System
T T T T T T
| Uncompensated System
= ——— N, = 4 Shutdown Pulses
molk | ——— Discrete-Time Time-Optimal | |
P | — — End of Burst Sequence
S |
e | -
2 |
@n
|
0 | [ | | | ! | !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t [ms]
R . R, 95 X 105 Energy Stored in RLC' Branch vs in Transducer Capacitance + Matching Network
M 1 ! : T T T I T I I
WV o N W——m RLC Branch: Uncompensated
= 2F 2 Cp, Matching Network: Uncompensated —|
+ & = e RLC Branch: N, = 4 Shutdown Pulses
+ v 3 1 1 4 15 | Cp, Matching Network: N, = 4 Shutdown Pulses .
u\ _ L, ; . - T v T3 == C) L, .’-S (2% e RLC Branch: Discrete-Time Time-Optimal
n - 1k | Cy, Matching Network: Discrete-Time Time-Optimal ||
Ty - To T g | — — End of Burst Sequence
- - L+ & 0.5 - 7]
Il : !
(&) 0 Leez N I L L | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t [ms]
A Control Voltage: u(t)
T T T T T T
--------1-|--- —— N, = 4 Shutdown Pulses
al | Uncompensated System |
| ——— Discrete-Time Time-Optimal
= | — — End of Burst Sequence
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