Dual-Domain Image Denoising ECE 6500: Fourier Techniques and Signal Analysis

Kartik V. Sastry

School of Electrical and Computer Engineering Georgia Institute of Technology

April 2nd, 2019

Presentation Outline

Introduction

- Motivating The Denoising Problem
- Types of Noise
- Why Dual-Domain?

2 Background

- Spatial Domain: The Bilateral Filter
- Extension: The Joint/Guided Bilateral Filter
- Domain Transform: STFT / Gabor Transform
- Frequency Domain: Wavelet Shrinkage

🗿 Dual-Domain Image Denoising

- Process Overview
- Results and Performance

Motivating The Denoising Problem

(a) Input (b) Noisy trg. (c) Clean trg. (d) Reference

Figure: Recovering critical details from corrupted MRI images [2]

- Image de-noising algorithms attempt to recover the original image in the presence of noise.
- Widely applicable: Surveillance, Medicine, Biology, Film

Various Types of Noise

Figure: Quantization Noise ¹

Figure: Salt & Pepper Noise ²

Figure: Periodic Noise ²

- Quantization Noise, Anisotropic Noise, Periodic Noise, Salt and Pepper Noise - Straightforward solutions for these in isolation
- Gaussian Noise Most commonly treated in the literature. Popular because there are generally multiple sources of random noise (CLT)
- We consider additive, random noise: $y = x + \eta$
 - Model η as stationary with known $\mathrm{Var}[\eta]=\sigma$
 - y: Observed Image, x: True Image

 $^{2} \texttt{Image Source: https://www.quora.com/How-can-we-estimate-noise-from-an-image}$

Georgia Institution

Why Dual-Domain?

A Fundamental Tradeoff

It is desirable to preserve edges and low contrast textures in images, while removing noise.

	Spatial Domain	Transform Domain
	Techniques	Techniques
Preserve Sharp Edges?	 Image: A set of the set of the	×
Preserve Textures?	×	✓

Want To Preserve Edges

- Filter in the spatial domain
- Bilateral Filtering is a well known technique!

Why Dual-Domain?

A Fundamental Tradeoff

It is desirable to preserve edges and low contrast textures in images, while removing noise.

	Spatial Domain	Transform Domain
	Techniques	Techniques
Preserve Sharp Edges?	✓	×
Preserve Textures?	×	

Want To Preserve Edges

- Filter in the spatial domain
- *Bilateral Filtering* is a well known technique!

Want To Preserve Textures

- Filter in a transform domain
- Wavelet Shrinkage is a well known technique!

shuth

or recrimedogy

Why Dual-Domain?

A Fundamental Tradeoff

It is desirable to preserve edges and low contrast textures in images, while removing noise.

Spatial Domain	Transform Domain
Techniques	Techniques
	X
×	 Image: A start of the start of
	Spatial Domain Techniques

Want To Preserve Edges

- Filter in the spatial domain
- *Bilateral Filtering* is a well known technique!

Want To Preserve Textures

- Filter in a transform domain
- Wavelet Shrinkage is a well known technique!

WI IECHNOLOGY

Background

- Spatial Domain: The Bilateral Filter
- Extension: The Joint/Guided Bilateral Filter
- Domain Transform: STFT / Gabor Transform
- Frequency Domain: Wavelet Shrinkage

Dual-Domain Image Denoising

Spatial Domain: The Bilateral Filter

Warm Up: The Gaussian Blur

Let \mathcal{N}_p be a square patch of an image, \mathcal{I} , centered about pixel p.

$$GB_{\mathbf{p}} = \sum_{\mathbf{q} \in \mathcal{N}_{\mathbf{p}}} G_{\sigma_s}(||\mathbf{p} - \mathbf{q}||) \ \mathcal{I}_{\mathbf{q}}, \text{ where } G_{\sigma_s}(x) = \frac{1}{2\pi\sigma_s^2} \exp\left(\frac{x^2}{2\sigma_s^2}\right)$$

Figure: Gaussian blur with varying values of σ [3]

GeorgiaInstituts of **Tech**nology

Spatial Domain: The Bilateral Filter

The Bilateral Filter

The Bilateral Filter introduces a second Gaussian kernel, which penalizes large differences in intensity:

$$BF_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in \mathcal{N}_{\mathbf{p}}} G_{\sigma_s}(||\mathbf{p} - \mathbf{q}||) G_{\sigma_r}(\mathcal{I}_{\mathbf{p}} - \mathcal{I}_{\mathbf{q}}) \ \mathcal{I}_{\mathbf{q}}$$

Input

Bilateral filter

Residual

Figure: Output and residual of bilateral filter [3]

Extension: The Joint/Guided Bilateral Filter

The Joint/Guided Bilateral Filter

For improved performance on low contrast images, the Bilateral Filter can be guided by a low-noise guide image, \mathcal{G} by modifying the argument of the range kernel.

$$JBF_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in \mathcal{N}_{\mathbf{p}}} G_{\sigma_{s}}(||\mathbf{p} - \mathbf{q}||) G_{\sigma_{r}}(\underbrace{\mathcal{G}_{\mathbf{p}} - \mathcal{G}_{\mathbf{q}}}_{Formerly \ \mathcal{I}_{\mathbf{p}} - \mathcal{I}_{\mathbf{q}}}) \mathcal{I}_{\mathbf{q}}$$

Figure: A scenario in which guided filtering is useful [4]

Domain Transform: STFT / Gabor Transform

The Big Picture

- The Short-Time (Discrete) Fourier Transform (STFT) is a Discrete Fourier Transform (DFT) performed on a *windowed* signal.
- If the windowing function is chosen as a Gaussian, then the overall transformation is known as the *Gabor Transform*.
- Sharp edges (high contrast spatial features) give rise to undesirable artifacts in the transform domain.

Figure: Illustration of frequency in images ³.

³Image Source: https://www.cs.unm.edu/ brayer/vision/basis.gif

Frequency Domain: Wavelet Shrinkage

Key Observation

• The Fourier Coefficients of a noisy image will also contain noise.

Effect of Noise on Fourier Coefficients

The variance of the Fourier Coefficients in terms of the *known* variance of the noise Var[η] = σ (Slide 4) is given by [1]:

$$\sigma_{\mathbf{p},f}^2 = \sigma^2 \sum_{\mathbf{q}\in\mathcal{N}_{\mathbf{p}}} \underbrace{k_{\mathbf{p},\mathbf{q}}^2}_{>0} > \sigma^2$$

• $k_{\mathbf{p},\mathbf{q}}$ is the product of two Gaussians: a *spatial* and a *range kernel*.

Frequency Domain: Wavelet Shrinkage

Key Observation

The Fourier Coefficients of a noisy image will also contain noise.
 Shrink them!

How Much To Shrink?

• Consider shrinkage factors $K_{\mathbf{p},f}$ as in [1]:

$$\mathcal{K}_{\mathbf{p},f} = \exp\left(-rac{\gamma_f \sigma_{\mathbf{p},f}^2}{|\mathcal{G}_{\mathbf{p},f}|^2}
ight)$$
 Note: $\lim_{|\mathcal{G}_{\mathbf{p},f}| \to \infty} (\mathcal{K}_{\mathbf{p},f}) = 1$

where $G_{\mathbf{p},f}$ is the Gabor coefficient for frequency f in a patch, $\mathcal{F}_{\mathbf{p}}$, about pixel \mathbf{p} in guide image \mathcal{G} .

Georgialnetitute

Frequency Domain: Wavelet Shrinkage

Inverse DFT At The Origin, p

$$ilde{\mathcal{I}}_{\mathbf{p}} = rac{1}{|\mathcal{F}_{\mathbf{p}}|} \sum_{f \in \mathcal{F}_{\mathbf{p}}} K_{\mathbf{p},f} I_{\mathbf{p},f}$$

where $I_{\mathbf{p},f}$ is the Gabor coefficient for frequency f in a patch, $\mathcal{F}_{\mathbf{p}}$, about pixel \mathbf{p} in original image \mathcal{I} .

How Much To Shrink?

• Recall:

$$K_{\mathbf{p},f} = \exp\left(-\frac{\gamma_f \sigma_{\mathbf{p},f}^2}{|G_{\mathbf{p},f}|^2}\right)$$
 Note: $\lim_{|G_{\mathbf{p},f}| \to \infty} (K_{\mathbf{p},f}) = 1$

GeorgiaInstitute of Technology

Process Overview

DDID Process

The noisy image, \mathcal{I} , is first split into patches about each pixel **p**. Each patch, $\mathcal{N}_{\mathbf{p}}$, is processed to yield a single, *denoised* pixel, $\tilde{\mathcal{I}}_{\mathbf{p}}$.

Figure: Block diagram of the Dual-Domain Image Denoising Process in [1]

Georgialnstitute of Technology Background

Dual-Domain Image Denoising ○○●

Results and Performance

Original Noisy Image BM3D DDID

K. Sastry

Figure: Comparison of DDID with other popular denoising techniques [1]

References I

Claude Knaus and Matthias Zwicker. Dual-domain image denoising. In 2013 IEEE International Conference on Image Processing, pages 440-444. IEEE. 2013.

- Jaakko Lehtinen, Jacob Munkberg, Jon Hasselgren, Samuli Laine, Tero Karras, Miika Aittala, and Timo Aila. Noise2noise: Learning image restoration without clean data, 2018.

Sylvain Paris, Pierre Kornprobst, Jack Tumblin, and Frédo Durand. A gentle introduction to bilateral filtering and its applications. In ACM SIGGRAPH 2007 Courses, SIGGRAPH '07, New York, NY, USA. 2007. ACM.

References II

 Georg Petschnigg, Richard Szeliski, Maneesh Agrawala, Michael Cohen, Hugues Hoppe, and Kentaro Toyama.
 Digital photography with flash and no-flash image pairs.
 In ACM SIGGRAPH 2004 Papers, SIGGRAPH '04, pages 664–672, New York, NY, USA, 2004. ACM.

