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• Smart charging is motivated by grid-level issues
• Transmission level: duck curve

• Distribution level: demand of EVs → overloading, low power quality
• As EV adoption increases, charging load becomes significant
• Smart charging: control battery charging load over time

• Stakeholders
• EV owners should see benefits in exchange for their participation
• Power utility should have operational constraints met, plan for 

capital investments
• Policy makers should understand what technologies to invest in

• Decentralized smart charging is attractive - will scale well
• EVs / homes and the power utility exchange information

• EVs / homes make their own charging decisions
• Centralized: utility dictates how and when all EVs charge

The Duck Curve
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EVs will come 
home to charge 

at this time

Transmission level: total load – renewable generation
(i.e. demand on non-renewable generators)

Introduction

If time permits, I have two slides on grid impact 
assessment of a smart charging strategy that can be 
realized using the prototype system discussed today!



• Review of Academic Literature + Commercial Solutions
• Academic Solutions ([1]-[12]): controllable AC/DC power converters

• (+) Controllable: accept reference commands from a smart charging algorithm

• (--) Time to market: If on-board type, OEMs need to license and implement
• (--) Accessibility: If off-board type, not all EVs have DC charging pins (most do)

• (--) Not suitable for residential use: DC charging is typically fast / high power, but 
most people charge at home, overnight (slow / lower power)

• Commercial Solutions: charge scheduling “smart” EVSE’s or EVs
• (+) Time to market: on-board solutions already implemented by OEMs

• (+) Accessibility: Every EV has AC charging pins

• (+) Suitable for residential use: off-board solutions provide AC power to EVs
• (--) Not controllable: Some products have heuristic scheduling features at best

• Our Solution
• Controllable, off-board, optimization-based, AC smart charging system J

• Compatible with 99 EV models across 25 makes, limited only by a (replaceable) 
third-party telematics API used for rapid implementation [13]

• Supports wider class of TOU price signals (e.g., real-time price signals issued 
to manage grid impact) than commercial solutions, as well as other 
objectives, like maximization of renewable energy consumptionSlide 3/10

Contributions
EVSE Manufacturers EV Manufacturers
AMPROAD Lectron Audi
Anderson Mustart Chrysler Group
BougeRV Myenergi Ford

ChargePoint Ocular General Motors
Emporia Smappee Honda
Enel-x Splitvolt Hyundai
EO Wallbox Toyota

Fimer ZJ Beny Tesla
Grizzel-E Volvo

Enel-x JuiceBox: A “Smart” EVSE

EVs and EVSEs with Charge Scheduling Features



• Objective
• Given starting energy level at 𝑡 = 𝜏, 𝐸#[𝜏], determine optimal charging command 

sequence 𝑃# 𝜏 , … , 𝑃#[𝑇 − 1] subject to 𝐸# 𝑇  being as close to 𝐸$,&'(
# 	as possible

• (Re-)solve at 𝜏 = 1, 2, … , 𝑇 − 1 to overcome imperfect modeling, handle 
unexpected changes (e.g., power outage, price changes)

• Quantizer: Updates the goal (𝐸$,&'(
# → 𝐸$# 𝑡 )

• Ensure Optimizer solves feasible problems at each time step

• Necessary because energy is delivered in packets of Δ ⋅ 𝑃)*+#  kWh

• 𝐸$# 𝑡 − 𝐸#[𝑡] = quantize(𝐸$,&'(
# − 𝐸#[𝑡])

• Optimizer: Plans to reach the goal

• Terms: 𝐽!, 𝐽", 𝐽,; user-selectable weights: 𝑤!, 𝑤", 𝑤,
• At each of 𝑡 = 1, 2, … , 𝑇 − 1:	minimize	 𝑤!	𝐽! + 𝑤"	𝐽" + 𝑤,	𝐽,
• Problem is an integer linear program – mature and fast solvers exist
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Smart Charging Algorithm

Quantizer

�, T, PV
max

Optimizer

�, T, PV
max,

⇡,m,w1, w2, w3

Vehicle

EV
T,des + EV

T � EV
PV EV

�

𝐽! = #
"#$

%&'

𝑡	𝑃([𝜏]𝐽) = Δ#
"#$

%&'

(1 − 𝑚 𝜏 )	𝑃([𝜏]𝐽' = Δ#
"#$

%&'

𝜋 𝜏 	𝑃([𝜏]	

Charging power limits
(on or off)

Δ#
"#$

%&'

𝑃([𝜏]	 = 𝐸%( 𝑡 − 𝐸([𝑡]

Charging requirement

𝑃( 𝑡 ∈ {0, 𝑃+,-( }

To minimize $ paid to utility To minimize kWh of non-
renewable energy consumed

To minimize charging time
(units are not meaningful)

Symbol(s) Units Interpretation
𝑇 - length of time horizon
𝑡 - time index:	𝑡 = 1, 2, … , 𝑇
Δ hour time step
𝜋[𝑡] $/kWh price of electricity at time 𝑡
𝑚[𝑡] - grid energy mix at time 𝑡
𝑃![𝑡] kW power flow into EV at time 𝑡
𝑃"#$! kW max power flow into EV
𝐸![𝑡] kWh energy stored in EV at time 𝑡
𝐸%,'()! kWh desired value of 𝐸![𝑇]

Optimization-Based Feedback Control

Nomenclature

Block Diagram



• GT Hardware
• Regulates power flow

• GT App
• Interfaces with user
• Provides user preferences, 

requirements to GT 
Server

• GT Server
• Interfaces with vehicle, 

utility, and GT App

• Implements Smart 
Charging Algorithm

• Sends relay open/close 
commands to GT 
Hardware 
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Hardware/Software Architecture
GT Hardware

Relay Charging CableWall
Outlet Vehicle

Vehicle 
Manufacturer’s 

Server

GT Server GT App

Microcontroller

Utility

1	𝜙 AC 
Power

SoC, Fault Info
(cellular network)

Control
(physical wire)

Optimal Relay Control 
Sequence (WiFi)

𝜋 𝑡 ,𝑚 𝑡 User + Vehicle 
Info (WiFi)

User

Preferences,
Requirements

Feedback,
Guidance

1	𝜙 AC 
Power

1	𝜙 AC 
Power

SoC, Fault Info (WiFi, via third-party SmartCar API)

Information Flow

Power Flow



• Enclosure
• 3D printed using PLA, 

ESD-safe resin
• Houses MCU, relays
• Lv. 1: NEMA 5-15
• Lv. 2: NEMA 14-30

• Mobile App
• User enters charging 

requirements in 
familiar units (wall-
clock time, battery %)

• Preset modes for 
preferences, informed 
users can tune weights
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Photos

Host PC running GT Server,
Smartphone running GT App

Prototype System,
Oscilloscope

Standard Charging 
Cable

Experimental Setup



Onboard charger 
ramps up current

• Equipment: Vehicle + Charging Cable, Prototyped Smart Charging System, Oscilloscope
• Vehicle: 2021 Volvo XC90 Recharge – battery pack capacity: 11.6 kWh; max. charging power at 120V: 1.2 kW 

• Response-Time Test: Vehicle-imposed transient between relay-close command and full power flow: ≈ 13	sec
• Command-Following Test: Successful demonstration of minimum-cost charging, even under non-idealities

• Average power flow during charging is not constant - possibly due to non-charging load and/or constant-voltage charging 
• Vehicle-reported energy values are higher than expected (2-3% SoC), likely due to error in state-of-charge estimation
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Experimental Validation

Response Time Test ResultsCommand-Following Test Results

Not charging 
here, price 
was high!Error shown is 

expected and 
mitigated by the 
the combination 
of feedback and 
re-computation
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Summary, Conclusions
• Smart charging of electric vehicles can help manage grid impacts:

• Our smart charging solution is suitable for near-term residential deployment (where most charging happens) because:
• It performs comparatively low-power AC charging (rather than high-power DC charging)

• It utilizes optimization techniques (rather than heuristic methods) to determine charging behavior 
• It is vehicle-external (rather than on-board), and readily interfaces with a wide range of vehicles (99 models across 25 makes)

• Implementation details are presented for a system that:
• Supports charging Levels 1 and 2 defined in the SAE J1772 standard
• Interfaces with an EV through (i) a standard charging cable, and (ii) a third-party telematics API (compatible with a 

wide range of EV manufacturers) 
• Uses an optimization-based feedback control algorithm determines an optimal set of time intervals during which to 

charge the EV at a pre-defined, constant power level

• Experimental results demonstrate minimum-cost charging of a 2021 Volvo XC90 Recharge using our prototype 
smart charging system
• Even in the presence of mild, unmodeled non-idealities.



• Prototype Refinement and Testing
• Test Level 2 charging capabilities
• Conduct longer-duration tests with vehicle

• Add current and voltage measurement capabilities to prototype 
• Can potentially eliminate the need for a third-party API

• Upgrade smart charging algorithm to include grid impact management (developed in our prior work)

• Grid Impact Assessment
• Higher fidelity assessment of grid impact of aforementioned smart charging algorithm, including:

• Physics-based model of distribution feeder

• Monte-Carlo simulation techniques to capture randomness in human behavior

• Modeling of significant nonidealities observed in experimental work
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Next Steps
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Backup Slides on Grid Impact

Content taken from our own prior work in [14]

Definitions:

• Rapid charging - standard home charging behavior; EVs charge at the maximum-available power, as soon as they plug in
• Single-stage smart charging – naïve approach in which a smart charging objective function is directly minimized; the best 

that can be expected from a `smart’ EVSE (i.e., one that has charge scheduling features) in a price minimization setting
• Two-stage smart charging – novel method proposed in above work, in which non-uniqueness in the set of optimal (or near-

optimal) solutions to a smart charging problem is leveraged to mitigate grid impact



• Consider a radially-connected neighborhood of 20 homes, each with an EV
• Each home independently performs smart charging or rapid charging

• Each home can define “smart” as (i) min. $ paid to utility, or (ii) max. kWh of RE consumed

• Each such home can choose single-stage (consumer-centric) or two-stage optimization

• Evaluate impact of EV charging on aggregate load (sum over all homes):

• 𝑅 = !"#	%&'()	*)"'+	,-	"..	/01	"+*	2&!(1
!"# %&'()	*)"'+	,-	"..	2&!(1	&+.-

• Ex: 𝑅 = 1.2	 ⟹ expect 1.2x more power flow into neighborhood due to EV charging

• 𝑅 = 1 is best possible scenario if EVs cannot be discharged to serve household load

• Study effect of smart charging participation on 𝑅
• Examine trends in statistics over multiple random trials, in which key input parameters are 

randomly from assumed distributions (shown below)

Grid Impact Assessment: Method

Time-of-use price and grid mix signals used by 
all homes performing smart charging



Note: EV charging power is either 0 or max. power at any time
Commercially-available EV smart chargers have this capability today

Grid Impact Assessment: Simulation Result
• Each box plot represents the 

distribution of 𝑅 values that arises due 
to random selection of EV arrival time, 
charging needs, etc.
• Red line = median
• Blue box = interquartile range

• TOU pricing alone may not be effective 
in curtailing peak demand. Smart 
chargers should respond to TOU 
pricing in a grid-favorable way!

• Smart chargers should impose slight 
concessions on customers who wish to 
maximize RE consumption!

• In both cases, smart charging can 
potentially reduce need for capital 
investment in line/transformer 
upgrades

Increasing participation in smart charging Increasing participation in smart charging

Median value and spread 
of 𝑅 both decrease as 
participation increases!

Median value and 
spread of 𝑅 both 
decrease as participation 
increases!
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